

Patent title:	Self-adaptive matrix completion for heart rate estimation from face
	videos under realistic conditions
FBK center:	ICT - Information and Communication Technology
Inventor(s):	Sebe Niculae (Università degli Studi di Trento), Alameda-Pineda Xavier
	(Università degli Studi di Trento), Tulyakov Sergey (Università degli
	Studi di Trento), Ricci Elisa (Fondazione Bruno Kessler), Yin Lijun
	(University of New York), Cohn Jeffrey F (University of Pittsburgh)
Application	US Provisional Patent Application No. 62/354,475 — priority date 2016-
number(s):	6-24; US Patent Application No. 15/631,346 — priority date 2017-6-23
Bibliographic data:	US2017367590 (A1) — 2017-12-28; US10335045 (B2) — 2019-07-02
Proprietor(s):	Università degli Studi di Trento (University of Trento), Fondazione
	Bruno Kessler (Bruno Kessler Foundation), The Research Foundation for
	The State University of New York, University of Pittsburgh - Of The
	Commonwealth of Higher Education
IP status:	Patent pending. Available for license or assignment
Patent family:	US10335045 (B2) — 2019-07-02
Application(s):	Heart rate estimation, Surveillance
Keyword(s):	Video analysis, Heart rate estimation
Abstract:	Recent studies in computer vision have shown that, while practically
	invisible to a human observer, skin color changes due to blood flow can
	be captured on face videos and, surprisingly, be used to estimate the heart
	rate (HR). While considerable progress has been made in the last few
	years, still many issues remain open. In particular, state-of-the-art
	approaches are not robust enough to operate in natural conditions (e.g. in
	case of spontaneous movements, facial expressions, or illumination
	changes). Opposite to previous approaches that estimate the HR by
	processing all the skin pixels inside a fixed region of interest, we introduce a strategy to dynamically select face regions useful for robust
	HR estimation. The present approach, inspired by recent advances on
	matrix completion theory, allows us to predict the HR while
	simultaneously discover the best regions of the face to be used for
	estimation. Thorough experimental evaluation conducted on public
	benchmarks suggests that the proposed approach significantly
	outperforms state-of-the-art HR estimation methods in naturalistic
	conditions.

