

Patent Title:	Hall effect magnetic sensor of the improved type and matrix
	comprising a plurality of said Hall effect magnetic sensors.
FBK Center:	CMM
Inventor(s):	Perenzoni Daniele (Fondazione Bruno Kessler), Pancheri Lucio
	(Fondazione Bruno Kessler),
Application	IT Patent Application No. VI2014A000224 — priority date 2014-09-
number(s):	05; International Patent Application No. PCT/IB2015/056747 — filing
	date 2015-09-04; EP Application No. 150788186.3 — filing date
	2015-09-04
Bibliographic data:	WO2016035039 (A1) — 2016-03-10; EP3194991 (A1) — 2017-07-26
Proprietor(s):	Fondazione Bruno Kessler (Bruno Kessler Foundation)
IP Status:	Patent pending. Available for license or assignment
Patent Family:	WO2016035039 (A1) — 2016-03-10; EP3194991 (A1) — 2017-07-26
Application(s):	Measure the intensity of a magnetic field
Keyword(s):	Hall effect magnetic sensors
Abstract:	The invention is a Hall effect magnetic sensor (1) suited to measure
	the intensity of a magnetic field (M), comprising a semiconductor
	substrate (2) subjected to doping on which the following elements are
	defined: two diodes arranged side by side; means (6) suited to inject
	minority charge carriers (100) and provided on the semiconductor
	substrate (2) along the axis of symmetry (X) defined between the two
	diodes (3), wherein the injector means (6) are configured to inject the
	minority charge carriers (100) in the semiconductor substrate (2) in
	such a way as to generate a diffusion current suited to flow under the
	two diodes (3); processing means (7) operatively connected to each
	output channel (32) of the two diodes (3) and configured to count the
	number of events induced by the minority charge carriers (100) on
	both of the diodes (3) during a pre-established time observation
	window (T) and to calculate the difference between the counts at the
	end of the observation time window (T). The Hall effect magnetic
	sensor (1) furthermore comprises a quenching circuit (5) connected in
	series to each one of the output channels (32) of the diodes (3) and the
	processing means (7) are operatively connected in an intermediate
	position between the output channels (32) and the quenching circuits
	(5).

Contact: KTA – Knowledge Transfer Area Email: kta@fbk.eu Web: kta.fbk.eu